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The controlled environment is a chimera; it is time to rethink our models. Here, I have chosen 

the prism of preclinical research on substance use disorders (SUD) to present, in a non-

exhaustive manner, advances enabled by the use of rodent models, the crises faced by animal 

experimentation, the reflections and responses provided by laboratories, to finally propose 

rethinking our models around questions of ecological relevance, in order to improve both ethics 

and scientific quality. Although my discussion is illustrated by the situation in preclinical 

research on SUD, the observation drawn from it and the proposals made can extend to many 

other domains and species. 

 

Unlocking the neurobiology of substance use disorders: insights from rodent models. 

In 2018, approximately 269 million individuals worldwide received diagnoses of Substance 

Use Disorders (SUD) (1). Defined by the Diagnostic and Statistical Manual of Mental Disorders 

V (DSM-5) as persistent drug use despite significant harm and adverse consequences (2), SUD 

extends its impact beyond the individual, affecting families, friends, and society at large. 

Consequently, there is an urgent imperative for a deeper understanding of the pathological 

mechanisms underpinning SUD (3), to facilitate the development of novel treatments. 

The DSM criteria for SUD have facilitated the modeling of behavioral traits in laboratory 

rodents through operant tasks. These tasks simulate various aspects of SUD progression, 

including increased motivation, loss of control over drug consumption, and susceptibility to 

relapse. Rats exposed to extended access drug self-administration procedures mimic loss of 

control over drug intake (4–7), while punishment-associated paradigms replicate compulsive 

drug seeking despite adverse consequences  (8,9). Around 20% of rats persist in drug-seeking 

behavior despite punishment, mirroring proportions observed of humans SUD cases in drug 

users. Rodent models also aid in studying vulnerability to relapse (10–12) and changes in 

affective state associated with SUD progression, through recordings of ultrasonic vocalizations 



(13–18). These models have uncovered crucial psychological and neurobiological mechanisms 

underlying SUD, such as alterations in mesolimbic dopamine neurotransmission and reward 

circuitry, which contribute to intense drug craving and heightened susceptibility to relapse 

(19,20,22,23). They also revealed the reduction in dopamine receptors during withdrawal, 

exacerbating the negative effects of drug use and elevating brain reward thresholds (24–26). 

These findings not only enhance our understanding of SUD but also offer insights into potential 

therapeutic interventions. 

Recent preclinical research has delved into the modulatory impact of the environment on the 

development, maintenance, cessation, and relapse of SUD, alongside its associated 

neurobiology (27,28). Studies have demonstrated that while the lack of alternative options 

constitutes a significant determinant in human vulnerability to SUD development (29), most 

rats turn away from drug self-administration when presented with alternative rewards (30–35). 

Moreover, the congruence between the drug used and environmental setting is pivotal: heroin 

tends to be consumed at home in humans, while cocaine is favored outside the home (36,37). 

Corresponding findings in rats indicate psychostimulants are preferred outside the home-cage, 

whereas opiates are consumed within it (36,38,39). Social context also significantly modulates 

drug use both in humans and rodents (28,40,41). Positive social environments, such as parenting 

in humans or nurturing maternal care in rats, act preventatively against the risk to develop SUD 

(42,43). Conversely, adverse social interactions, like child abuse in humans or repeated social 

defeat in rats, or a lack of positive social connections, such as loneliness in humans or rearing 

in isolation/maternal separation in rats, heighten this risk (44–48). Furthermore, the immediate 

social context of drug use impacts intake (49), contingent upon the specific substance used (50–

52), the relationship dynamics between the subject and the observer peer (53) and the peer's 

behavior, such as whether they are self-administering or not (49,50,53–55). Although the 

neurobiological mechanisms underlying this social influence remain poorly understood, it is 

plausible that the rewarding value of social interaction can potentiate or compete with that of 

drugs, mediated through interactions within the mesolimbic dopaminergic and oxytocinergic 

systems (56–59). In sum, these findings underscore the profound influence of environmental 

context on drug use and its neural underpinnings. 

 

 

 



Facing the crisis: challenges in preclinical research on substance use disorders. 

Despite the significant advances facilitated by the use of animal models, the translation of these 

findings into effective human treatments has been limited (60,61). This crisis of validation has 

perpetuated the notion that animal models, particularly in psychiatric disorders like SUD, 

exhibit poor validity, prompting numerous pharmaceutical companies to discontinue drug 

development programs (62). Moreover, mounting concerns pervade animal experimentation 

research. Outside laboratory confines, public trust in science is eroding (63), while debates over 

the ethical use of laboratory animals continue to unleash passions (64–66). Internally, within 

laboratories, it is reported that over 50% of preclinical findings lack reproducibility (67,68). 

Collectively, these crises pose a fundamental question: What is amiss in animal experiments? 

Research laboratories have responded to the lack of reproducibility by the current global gold 

standard of rigorous standardization (69). Intended to minimize variability within and between 

experiments, these excessively standardized methods ultimately exacerbate the reproducibility 

crisis rather than alleviate it. (67,70,71). Furthermore, it raises questions about the translational 

predictive validity of such preclinical research: ‘We would never perform a human drug trial in 

42-year-old white males with identical educational levels, identical socioeconomic statuses, 

identical jobs, identical houses with identical (locked) thermostats, identical wives, identical 

diets, identical exercise regimes, in the same small town in Wisconsin, who all incidentally had 

the same grandfather’ (72)? In preclinical studies, a homogeneous population (with identical 

genetic, age, weight, and gender characteristics) inhabiting controlled environments undergoes 

daily testing at consistent times, utilizing widely employed behavioral tasks. Given this setup, 

one must question the real-world relevance of our findings. Moreover, in attempts to minimize 

environmental variability, these gold standard methods overlook a crucial fallacy: there exists 

no truly controlled (i.e., neutral) environment for behavior. Consider, for instance, studies on 

SUD development conducted on rodents separated prematurely from their mothers—a common 

practice among rodent breeders. Investigations into an alternative social reward may yield 

skewed results when subjects are isolated in their home-cages, as is often the case. Studies 

examining abstinence and relapse may be compromised when drug access is restrained by 

experimenters. Do we not have enough confidence in our own findings regarding the influence 

of the environment on behavior and its neurobiology to utilize them for enhancing our own 

models? 

 



Exploring the neuroethological approach: advantages and limitations for neuroscience. 

In recent years, within the fields of ethology and animal welfare, one may be asked: ‘How 

STRANGE are your study animals?’ Here, STRANGE stands for ‘Social background; 

Trappability and self-selection; Rearing history; Acclimation and habituation; Natural changes 

in responsiveness; Genetic make-up; and Experience’ (73). This questioning echoes the self-

critique of human-evolutionary biologists, a decade earlier, who interrogated whether their 

samples constituted 'the weirdest people in the world' (WEIRD standing for: Western, Educated, 

Industrialized, Rich, and Democratic) (74). Both WEIRD and STRANGE highlighted that most 

behavioral research is conducted using (human and non-human) subjects that are not 

representative of a general population and can even be outliers in broader comparisons. 

Nonetheless, it is crucial to note conceptual distinctions between WEIRD and STRANGE. 

While the former pertains to characteristics of a specific demographic group, the latter 

encompasses a range of factors influencing behavior within laboratory settings as opposed to 

natural environments (73). As awareness grows regarding the disparity between laboratory 

subjects and wild animal populations or human societies, ethologists advocate for greater 

diversity among study subjects and more naturalistic experimental settings (75,76). 

In neuroscience as well, there is a growing chorus of dissent against overly artificial and 

simplified laboratory tasks (77–79). As an alternative to this reductive behaviorist approach, 

the neuroethological approach, combining ethological research with methods of neural imaging 

and modulation, advocates for a deeper appreciation of the environment, especially the social 

context. This approach takes advantage of recent technical advances - like open-source 

machine-learning methods for automatic tracking of individual body parts and poses (80–82) 

and automatic detection of specific behaviors (83–86), and wireless technics of 

neuromodulation (87,88) and recording of neural activity (89) controlled by radio frequency 

devices - to propose studying the neurobiology of spontaneous behaviors of animals living in 

setup that reproduce the ecological characteristics of wild animals. Overall, the wider 

implementation of such approach in neurosciences laboratory would provide a breakthrough in 

discovering neurobiological mechanisms underlying naturalistic behavior, while improving the 

ethics of animal experimentation. 

However, it is imperative to meticulously scrutinize the limitations of this approach. A pertinent 

query arises: Can human SUD, among other psychiatric disorders, be sufficiently modelized 

based on observations of rodents in naturalistic environments? If artificial settings indeed 



engender artificial behaviors, does substance abuse manifest as a natural behavior observable 

in rodents beyond the confines of the laboratory? Likewise, when employing rats to emulate 

the impacts of social reward as a substitute for drug use in humans, it's noteworthy that unlike 

their counterparts in controlled laboratory settings (90), rats inhabiting semi-natural 

environments often exhibit pronounced aggression towards their congeners (91–93). 

Consequently, laboratory rats may present a more fitting model for investigating human social 

reward and interactions. Indeed, exploring animal behavior within semi-natural habitats 

embodies a novel comparative approach to human neuroscience but does not allow for the 

proper modeling of all human behavioral features. 

Let's diverge further and contemplate the notion that human behaviors, such as drug abuse, may 

not spontaneously occur in 'nature-like settings' either. After all, few of us rise at dawn to engage 

in gathering, hunting, or territorial defense. Instead, we awaken to alarms, commute to work, 

and partake in grocery shopping. Overall, we all live within societies that are human social 

constructions. Yet though to a lesser extent than laboratory rodents, we possess limited agency 

within these societies. This environment shapes our daily activities, social interactions, learning 

capabilities, mental and physical health, etc. This social ecology frees us from the quest for 

individual survival or fitness, that are the heart of ethologic research. In return, we face other 

problems: global warming, inequalities, pandemics, social inequalities and violence, the 

management of aging and dependency, neurobiological disorders, like social disorders or SUD, 

etc. Issues that are at the heart of preclinical neuroscientific research. 

To develop better models of the human condition, we need to question what aspects of this 

social environment influence our behavior? For instance: can daily sudden and jarring sound of 

alarm clock use lead to chronic stress? How do these aspects of our environment shape our 

neural architecture? Moreover, to what extent could these environmental stimuli impact other 

species? Studies on the influence of the environment on SUD have already provided some clues. 

Overall, the introduction of environmental complexity, as proposed by the neuroethological 

approach, is necessary to improve our animal models. But, ultimately, should the ecological 

relevance of animal models we aspire to establish reflect the natural living conditions of these 

animals or those conducive to eliciting the studied human behaviors? 

In conclusion, our exploration, centered on SUD research, has delved into the utilization of 

animals as models for understanding the human condition and the advancements achieved in 

behavioral neuroscience. However, we are currently confronted with the constraints of this 



approach, evident in the crises challenging the field. To advance preclinical neuroscience 

research both scientifically and ethically, a reassessment of our models is imperative. Drawing 

insights from diverse fields of research and embracing the neuroethological approach can guide 

us in this endeavor. Nevertheless, it is equally crucial to scrutinize the unique intricacies of our 

approach. 
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